Gabor Filters as Feature Images for Covariance Matrix on Texture Classification Problem

نویسندگان

  • Jing Yi Tou
  • Yong Haur Tay
  • Phooi Yee Lau
چکیده

The two groups of popularly used texture analysis techniques for classification problems are the statistical and signal processing methods. In this paper, we propose to use a signal processing method, the Gabor filters to produce the feature images, and a statistical method, the covariance matrix to produce a set of features which show the statistical information of frequency domain. The experiments are conducted on 32 textures from the Brodatz texture dataset. The result that is obtained for the use of 24 Gabor filters to generate a 24 × 24 covariance matrix is 91.86%. The experiment results show that the use of Gabor filters as the feature image is better than the use of edge information and co-occurrence matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture Classification of Diffused Liver Diseases Using Wavelet Transforms

Introduction: A major problem facing the patients with chronic liver diseases is the diagnostic procedure.  The conventional diagnostic method depends mainly on needle biopsy which is an invasive method. There  are  some  approaches  to  develop  a  reliable  noninvasive  method  of  evaluating  histological  changes  in  sonograms. The main characteristic used to distinguish between the normal...

متن کامل

Classification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet

  Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

TEXTURE CLASSIFICATION ON WOOD IMAGES FOR SPECIES RECOGNITION By TOU

ii To my family and friends iii ABSTRACT Surface textures are the most salient characteristics of an object as it encode surface details. Texture classification is the process to classify the images into different classes of textures and has been widely used in various implementations based on the textural information of the subjects, such as face detection, defects detection and rock classific...

متن کامل

Gabor Filters for Rotation Invariant Texture Classification

A Gabor filter based feature extraction scheme for texture classification is proposed. By using a novel set of circularly symmetric filters, rotation invariance is achieved. The scheme offers a high classification performance on textures at any orientation using both fewer features and a smaller area of analysis than most existing schemes. The performance of the scheme on noisy images is also i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008